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Elliptic Generating System 
A Bubnov-Galerkin formulation is used to solve an elliptic grid 

generation system by using linear and quadratic isoparametric 
The generating system used in this work is 

elements. Good orthogonality characteristics are obtained for sym- 
metric and non-symmetric physical domains using both complete 
boundary correspondence or a combination of Dirichlet and Neuman 
boundary conditions. The method exhibits excellent stability and 
requires a low number of iterations to attain convergence. Results are 
compared with those presented in (E. D. Chikliwala and Y. C. Yortsos, 
J. Comput. Phys. 57, 391, 1985). 0 1992 Academtc ores. tnc. 

where 

1. INTRODUCTION 

It has been pointed out by several researchers that, 
regardless of the numerical method used for the solution 
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of partial differential equations, the accuracy obtained 
is closely related to the “quality” of the generated mesh. 

with g,, and g,, being the elements of the main diagonal of 

One component of this quality is the orthogonality 
the couariant metric tensor. Equations (1 .l ) define an elliptic 

characteristics. A thorough description of different proce- 
system developed in [4] and applied to a specific geometry 

dures for the estimation of orthogonal grids can be found in 
using a finite difference discretization in [6]. In the 

[3]. Elliptic systems can provide orthogonal grids of good 
following developments a Bubnov-Galerkin formulation 

accuracy. One system that is particularly attractive is that 
is presented and applied to solve system (1.1). Numerical 

developed in [4]. It requires the calculation of only one 
results are obtained and compared with those reported in 

line control function for both generating equations in two 
[6] for exactly the same geometries used in this reference. 

dimensions. It is also relatively simple to implement using a 
Bubnov-Galerkin procedure. 

This paper is an attempt to use a Bubnov-Galerkin 
formulation to solve the weak constraint method for the 
construction of boundary-fitted orthogonal curvilinear 
coordinates developed in [4]. Numerical computations are 
carried out on a particular domain encounter in immiscible 
displacement processes [6]. This domain has been used 
here in order to facilitate comparison and because the wave- 
like shape of one of its boundaries is commonly encountered 
in the author’s field of marine/ship hydrodynamics. 
Although orthogonal coordinates are not required when 
applying the finite element method, it has long been realized 
[ 121 that the error in the element depends on the angle 
formed by the adjacent sides. Therefore, the lowest 
departure of this angle from orthogonality is likely to give 
improved results. 

II. BUBNOV-GALERKIN PROCEDURE 

In this section, we develop the method to solve the field 
equation (1.1 ), valid in the whole transformed domain Q 
surrounded by the contour r, as discrete points selectively 
specified. The method used, a Bubnov-Galerkin procedure, 
is one of the so-called methods of weighted residuals. The 
basic idea of these methods [ 1 ] is to obtain a solution of a 
differential equation 

-A#-f=O in 52, (2.1) 

subject to boundary conditions on the contour f by 
introducing an approximate function in the form 
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where the Cj are constants and the Gj are linearly 
independent functions chosen so that global boundary 
conditions may or may not be satisfied. Since (2.2) is an 
approximate function we note that, when substituted into 
(2.1), it will not satisfy the governing differential equation. 
Then we write 

-A&-f =R, (2.3) 

where R is an error quantity or residual. Let us now 
introduce a set of weighting functions wi (i = 1, 2, . . . . n) and 
construct the inner product (R, wi). Next, set the inner 
product equal to zero 

(R Wi) = 0, (2.4) 

which is equivalent to forcing the residual to be zero in an 
average sense. The choice of the weighting functions w, 
determines the weighted residual method. In a Bubnov- 
Galerkin procedure [ 7, S] the weighting functions are made 
equal to the trial (base, shape) functions Qj. In effect, this is 
equivalent to an orthogonal projection of the residual R 
onto each of a set of linearly independent functions Qi as 
implied by (2.4). In order for 6 to be the exact solution of 
the given differential equation, it is necessary that R is 
identical to zero. This requirement, if R is considered con- 
tinuous, is equivalent to requiring the orthogonality of the 
expression for R to all the functions Gi, i= 1, 2, . . . . n [7, 81. 
However, having at our disposal only a finite number n of 
constants C,, C,, . . . . C,, we can only satisfy n conditions of 
orthogonality. Based on these considerations we write 

(R, w,) = (R, @J = 1 RQi dL’ 
a 

= 
j[ ( 
R A i c,@,+f Qi dl2 = 0 (2.5) 

/=I 11 
which serves for the determination of the coefficients C,. On 
finding the C, from this system of equations and substituting 
them into the expression for d gives the required 
approximate solution. However, if we set the C, to be our 
unknown variables, the problem is solved when solving 
(2.5). To illustrate this concept, let us look at one of the 
equations defining the elliptic system (1.2). For the 
x-coordinate we have 

Let the approximate function 2 for the variable x be given 
by an expression like (2.2) as 

f= i: C,@,, (2.6) 
,=I 

then the residual for (1.1) becomes 

(2.7) 

and the inner product (R, wi) from (2.5) gives 

CR @i)=Jj R@,dEde= jj{f[f$] 

+;[f$]c&}dcdQ=O. (2.8) 

The relationship connecting the surface integral for the 
flux of a vector field with the volume integral of its 
divergence is known as the GreenGauss theorem and is 
expressed [ 91 

s ccVi,ids2= 
I 

crV,n, dT- 
s V,a,i da, (2.9) 

0 F R 

where the comma denotes derivatives. Applying (2.9) to 
(2.8) in a two-dimensional domain gives 

aaa@- I aaa@. 
f-L+--L a&a& faeaQ 

=jF~i~(f~)n,+(~~)n,}dT, (2.10) 

and, similarly for the y-coordinate, we write 

ajaq i agaq 
fz-+--- 

fae de 

=jF@i{(f$c+(+$)nQ}dr, (2.11) 

where 

$= c DjGj. 
J=I 

So far we have stated our problem in a global sense, i.e., 
for the entire physical domain 52. The essential principle of 
thefinite element method is that a continuum is divided into 
elements of suitable shape. The differential equations to be 
solved, (2.10) and (2.1 l), are written as a combination of 
appropriately selected interpolation functions. Since these 
functions can rarely be found for a whole domain, we find 
them for each element separately and satisfy certain 
continuity conditions at the elements’ common boundaries. 
These shape functions are written at suitably chosen points 
on the element, i.e., the nodes of the element. Thus (2.10) and 
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(2.11) can be considered our elemental equations with the 
interpolation functions written for each individual element. 
The equations written for each element are collected 
together to form a global system of algebraic equations. 
After introducing boundary conditions, nodal values of the 
variable can be calculated. We now proceed to discuss the 
type of elements to be used in this work. 

III. THE ISOPARAMETRIC ELEMENT 

Details on the origins, applications, and theoretical 
development that follow can be found in [lo]. The name 
isoparametric derives from the fact that the same parametric 
functions Sp, that describe the geometry of the element may 
be used for interpolating spatial variations of the unknown 
field variable on the element. 

Consider now a square element. The origin of the 
isoparametric coordinates (t, q) whose values range from 0 
to & 1 are established at the center of the element. The 
reference coordinate system is here (E, Q) and is related to 
(5, ‘I) for two-dimensional quadratic elements as 

We can now write (3.1) in terms of the corner and mid-side 
nodal values, 

with i = 1, . . . . 8. In matrix form Eqs. (3.2) are 

t&i) = cc1 bi> 

{ei> = CC1 PiI 

or 

Iai> = Ccl -I I&i) 

{br) = CC1 ~’ (ei) 

(3.3) 

(3.4) 

which are the polynomial coefficients in terms of the nodal 
coordinates of the computational domain. We can see that 
the matrix [C], made up by the element’s nodal coordinates 
in the (5, q) system, is the same for both {ai} and {bi}. 

Inversion of [C] in (3.4) and substitution of the coefficients 
into (3.1) gives 

&= i cDiEi 
i=l 

Q= f: @jQi, 

(3.5) 

where [11] 
I=1 

@1=-$(1-0(1-q)(1+5+q) 

Q2= -a(1 +t)(l-4)(1 -t+q) 

@X=-a(l+[)(l+q)(1-t:-4) 

Q4= -$(l -<)(l +r)(l+t-v) 

@5=;(1-~2)(1-~) 
(3.6) 

Q6=;(1-rj2)(1+r) 

@7=+(l-52)(1+)1) 

@*=&(l -Y/2)(1 -5). 

As mentioned above, the isoparametric element uses the 
same parametric functions to define the relationship 
between reference global coordinates and local parametric 
coordinates as to describe the variation of the given variable 
within the element. The unknown variables in this par- 
ticular case of mesh generation are the Cartesian coordinates 
of the physical domain. Then we write 

i= 1 XiQi 
I= 1 

PC E Yi@i, 

(3.7) 

i= 1 

where the Qi are the same parametric functions as (3.6) and 
xi, y, are the nodal values of the Cartesian coordinates. 
These nodal parameters are then equivalent to the constants 
C, in (2.2). 

A similar development could be followed for the case of a 
linear isoparametric element. In this case, only linear terms 
in t and q are taken in (3.1). The resulting approximation 
for (E, Q) is 

4 

.2= c Ei@, 

i= 1 

Q= i Pi@; 

(3.8) 

i= 1 

and for (a, p) is 

(3.9) 
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Consider now the chain rule expressions 

@1= $(I - 5)U -VI 

@2=N +4x1 -VI 

@3 = au + Ml + r) 

@4=$U-5)U +vl), 

where only the corner nodes are to be considered. 

(3.10) 

IV. FINITE ELEMENT FORMULATION 

In Section II we obtained expressions which were the 
result of a weighted residual procedure. These expressions, 
(2.10) and (2.11) contained approximation functions, .? and 
9, that were to be defined on an elemental level. In 
Section III, those functions were defined for linear and 
quadratic isoparametric elements. In this section, we com- 
bine Eqs. (2.10) and (2.11) with (3.5), (3.6), and (3.7) for 
quadratic elements or (3.8), (3.9), and (3.10) for linear 
elements. The upper limit in the sumation signs will be left 
unspecified and understood as n = 4 and n = 8 for linear and 
quadratic elements, respectively. The Bubnov-Galerkin 
procedure for the x-coordinate gave 

aaa@- iaaa@ 
f-l+--2 d&de 

aEa& fagi?@ 1 

=rr~i{(f~)n,+(~~)n,}dl: (2.11) 

or, in matrix form, 

(4.2) 

Thus 

where J is the Jacobian matrix given by 

The integration over the domain Qk referred to the (E, Q) 
introducing (3.7) or (3.9) into (2.11) gives an elemental coordinates must also be changed to the isoparametric 
equation as coordinates. Then we have [lo] 

=i~,~i{(f=,~)n~+(~o)n~}d~ (4.1) . introducing (4.3) and (4.4) into (4.1) gives 

where the subindexes k and 1 refer, respectively, to the 
element Q, and the boundary r, in contact with the contour 
of the domain. Equation (4.1) contains the E and Q variables, 
yet the interpolation functions were expressed in terms of 

i - aQj - aQj 

the local (<, II) coordinates. Thus we require a trans- 
+r; JZI ag+Jq 

[ 1 
formation between these two domains. This transformation 
corresponds to the mapping of an element on the x 

[ 
Ja ag 
- %+j,,% 11 det[J] dt dq 

computational domain (E, Q) to an element defined by the 
isoparametric coordinates. The transformed domain can, 
for convenience, be taken as a square with unit sides and our 

=~=,~i~(i;S::i;Sn~idr,. (4.5a) 

element equation (4.1) applied to a given element on this 
square. Similarly, for the y-coordinate we have 
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We can see that the left-hand sides of (4.5) and (4.6) give 
an n x n algebraic system for each element. It should be 
noticed here that (4.5) will, in general, give a non-symmetric 
matrix. This inconvenience can be circumvented by 
obtaining an average valuefk for each element. The right- 
hand side in (4.5) contains line integrals with derivatives of 
the Cartesian coordinates with respect to the (E, Q) coor- 
dinates of the computational domain. When this integral is 
evaluated at any given boundary, the boundary condition 
is termed as Neuman boundary condition. When the 
right-hand side of (4.5) is either made equal to the x or y 
coordinate of the boundary and the row and column 
of the corresponding main diagonal element are zeroed, 
the boundary condition is termed Dirichlet boundary 
condition. 

Equations (4.5) require the numerical estimation of 
surface and line integrals. This can performed using Gauss 
quadrature [lo]. In this work 2 x 2 points were used for 
linear elements and 3 x 3 for quadratic ones. 

V. CALCULATION OF THE SHAPE FACTORf 

The shape factor f was defined in (1.2). Then using (1.3) 
and (3.7) or (3.9) gives 

Now again we have the derivatives of the parametric 
functions Qi([, q) with respect to the computational coor- 
dinates (E, Q). We need the same transformation defined by 
(4.3). Then we can write (5.1) as 

(5.2) 

VI. NUMERICAL CONSIDERATIONS 

Observation of (4.5) together with (5.2) shows that the 
matrix system to be solved for the generation of the coor- 
dinate system (x, y) is nonlinear. An iterative procedure is 
then required to solve system (4.5). However, there is an 
initial difficulty. Equation (5.2) cannot be evaluated at the 
first iteration, since only the (x, y) coordinates of the con- 
tour of the physical domain are known. The coordinates in 
the interior of the physical domain are the solution of (5.2) 
at this very first iteration. Then the process followed in this 
work is 

a l Define boundary points of the physical domain 

b l Solve the following elliptic system using Dirichlet 
boundary conditions [4] 

(6.1) 

which in a Bubnov-Galerkin formulation gives 

(6.2) 

Dirichlet boundary conditions for (6.2) are defined using 
various functions for f = f(5, v) at the boundary. These 
functions are described in the following section. 

C l With calculated f values from step b solve system 
(4.5) using specified boundary conditions. At this stage, this 
is done using Cholesky’s method. 

d l With newly calculated x and y values, recalculate 
new f values using (5.2). 

e l Recalculate x and y and go back to step d until 
convergence is obtained. 

The number of iteration cycles required for convergence 
is the number of times the program requires to loop through 
steps d to e. The convergence criteria utilized in [6] has 
been adopted here solely for comparison purposes. This 
convergence criteria was specified by an index termed 
MD0 = 147~ - 01 that measured the localized maximum 
deviation from orthogonality. Convergence was obtained 
when MD0 at a fixed point stabilized within one decimal 
point to a constant value. The angle 8 is calculated as [S] 

cOse=d& + i y, j2,%+J22% 
[ ( 

2. 
i= I aq 11 
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or TABLE I 

where 

T, T, + T3 T4 
CoSe=(T~+T~)‘i2(T~+T~)l:2’ 

Case A. Complete Boundary Correspondence Exponential 
(6.3) Boundary Point Distribution on the Upper Side Linear Iso- 

parametric Elements 

MDO-ADO-Number of Iterations 

Case H = 0.05 H=O.lO H=0.15 H = 0.20 H = 0.25 
n 

T,=xxj [ I,, gj+f,,% 1 = 0 3.6-0.9-19 
J=l at af7 

ISHA 4.9-1.2-20 6.3-1.7-20 8.3-1.9-21 9.&2.9-20 
LSHA = 1 1.74.66 3.3&L-6 4.9-1.5-6 6.9-1.7-6 6.9-2.1-9 
ISHA = 2 1.8~0.610 3.4-l&10 5.1-1.5SlO 8.9-l&12 9.42.7-16 1 ISHA ISHA = = 4 3 1.74.66 1 .&o.fS 3.0-L-7 3.1-1.1-8 4.8-1.47 4.3s1.4-7 S&1.&12 5.2%1.4-7 10.7-2.612 6.8-2.0-7 

T,= i yj 
a@. - a@. 

f,,-!+J12-’ VI.1. Numerical Results 
j= 1 at aq 1 

This section presents results obtained using the 

T,= i yj j2,$$+jz23 1 geometries and boundary conditions specified in [6] as 
. 

j= I all cases A, B, and C. For detailed information, the reader is 
encouraged to refer to this reference. All results presented 

A more general convergence index could be the average 
deviation from orthogonality (ADO). This value would give 
the grid’s overall deviation from orthogonality, since it takes 
into account all the corners of each element. It is defined as 

where the subindex k refers to the element number and the 
superindex i refers to the element’s corner, N being the 
number of elements. The index ADO was not used as 
a convergence criteria. However, values of ADO are 
presented together with those of MD0 to give a global idea 
of the orthogonality characteristics of the whole grid. 

The followine. section is dedicated to the results obtained 
for particular geometries of a physical domain, those used in 
[ 61, using the methodology presented here. We now briefly 
mention the types of functions used to define the shape 
factor f on the contour to be used in step b to solve (6.2). 
This definition will be codified by the parameter ISHA 
(ZSHA = 1, 2, 3 are taken from [6] ), as follows 

here are for single precision computations. 

VI. 1.1. Case A. Complete Boundary Correspondence 

It was reported in [6] that no satisfactory orthogonal 
grid could be obtained using complete boundary corre- 
spondence when solving system (4.5). The cause was 
attributed to the asymmetry of the physical domain with the 
ensuing suggestion that complete boundary correspondence 
could only be used for symmetric regions. The method 
presented in this work shows otherwise. Table I shows 
results for the asymmetric region shown in Fig. 1. Equidis- 
tant boundary point distribution in all sides has been used, 
except the upper one where exponential boundary point 
distribution has been applied. The first quantity in each 

ZSHA = 0. Finite element definition off: 
ZSHA = 1. Uniform shape factor distribution. 
ZSHA = 2. Exponential shape factor distribution. 

ZSHA = 3. Linear shape factor distribution. 

ZSHA = 4. Normal shape factor distribution given by 
the probability density function 

f (E;) = & ,c -0.5(~hYl 
0 

do = a constant. 
FIG. 1. 16 x 16 grid, H = 0.15, ISHA = 4. Exponential distribution of 

points on upper boundary. 
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FIG. 2. 32 x 16 grid, H= 0.15, ISHA = 3. Equidistant distribution of 
points in all boundaries. 

column refers to MDO, the second to ADO, and the third 
to the number of iterations required to attain convergence. 
This format of presenting tabled information will be used 
throughout this work unless otherwise stated. 

It can be seen from Table I that good localized (MDO) 
and overall (ADO) accuracy can be obtained using 
complete boundary correspondence in a non-symmetric 
domain. Overall best values are obtained using a normal 
distribution forf: However, the difference in MD0 for each 
H (H being the height of the wave-like boundary) did not 
show, in general, a difference greater than 3” among the five 
initial shape factor distributions. The corresponding dif- 
ference in ADO was not greater than 0.9”. Assuming that 
the effect of these differences on a subsequent engineering 
computation is not to be very significant, the method seems 
to yield acceptable orthogonal grids regardless of the initial 
shape factor distribution. Solutions in [6] were reported as 
strongly dependent on such distributions. The number of 
iterations required to attain convergence was lowest for 
ISHA = 1 and ZSHA = 4, i.e., constant and normal initial 
distribution of the shape factor. Therefore, from a CPU time 
point of view these initial distributions seem to be more 
advisable. For ZSHA = 0, 1, and 4 the number of iterations 
required for MD0 to be reached showed to be almost 
independent of H. For ZSHA = 2 and ZSHA = 3, a slightly 
higher number of iterations is required for H= 0.2 and 
H = 0.25. 

Figure 1 shows an orthogonal grid using complete 
boundary correspondence for a 16 x 16 grid with H = 0.15, 
ZSHA = 4. For this case, MD0 was 4.3 and ADO was 1.4. 

TABLE II 

Case A. Complete Boundary Correspondence Exponential 
Boundary Point Distribution on the Upper Sde Linear Iso- 
parametric Elements 

MDO-ADO-Number of Iterations 

Case H=0.3 H=0.4 H=0.5 

ISHA = 4 12.8-6.1-5 14.6-5.8-7 22.7-l 1.84 

581/98/I-I2 

TABLE III 

Case A. Complete Boundary Correspondence Equidistant 
Boundary Point Distribution Linear Isoparametric Elements 

MDO-ADO-Number of Iterations 

C&e H = 0.05 H=O.lO H=0.15 H = 0.20 H = 0.25 

ISHA =O 6.2-2.5-17 11.14.7-16 16.2-6.2-16 2O.k 7.2-11 24.5- 8.2-20 
ISHA = 1 4.2-2.8-6 8.&5&6 13.1-8.1-7 17.5-10.5-11 21.&12&12 
ISHA = 2 4.2-2.8-5 8.5-5.611 12.9-8.1-15 17.2-10.5-13 21.2-12.613 
LSHA = 3 4.6-2.8-S 9.2-5.6-7 14.1~8.lLll 18.5-10.8-14 23.lk12.615 
ISHA = 4 4.&2.8%6 8.3-5.6-l 12.68.1~10 16.9-10.5-13 20.9-12.6-14 

A similar level of accuracy was obtained for a symmetric 
region with equidistant boundary correspondence in a 
32 x 16 grid with ISHA = 3 and H = 0.15. For this case, 
Fig. 2, MD0 was 4.2 and ADO was 1.1. 

Greater values of H were used for ISHA = 4 in order to 
verify if the method would still converge for very large H 
values. Table II shows results for this case. Convergence 
as well as good overall orthogonality characteristics are 
obtained. The localized orthogonality is seen to deteriorate 
as H becomes extremely large. 

Results for MD0 and ADO are shown in Table III for 
equidistant boundary point distribution for the domain 
shown in Fig. 1. Values of MD0 and ADO are roughly 2 
and 4 times higher than those for exponential boundary 
point distribution. However, very good convergence 
characteristics are kept with the number of iterations again 
being lowest for ZSHA = 1 and, in general, ISHA = 4. 

It should be noted that results of Table III correspond to 
only three iterations. The reasoning behind stopping at 
iteration 3 is shown in Fig. 3. This figure shows typical con- 

CASE A:COMPLETE BOUNDARY CORRESPONDENCE 
30 

Legend 
n MDO-EXPONENTIAL 

fl Am-EXPONENTIAL 

0 M_DOIEO~lD~TA.T 

0 ADO-EQUIDISTANT 

---+ 
0 I ! I I 1 

0 2 4 6 8 10 

NUMBER OF ITERATIONS 

2 

FIG. 3. Convergence characteristics for exponential and equidistant 
distribution of points. 



170 ALLIEVI AND CALISAL 

TABLE IV 

Case B. Dirichlet and Neuman Boundary Conditions 
Neuman Boundary Condition on the Upper Side Linear Iso- 
parametric Elements 

MDO-ADO-Number of Iterations 

Case H = 0.05 H=O.lO H=O.lS H = 0.20 H = 0.25 

ISHA = 0 12.2-3.1-9 10.8-3.3-10 10.&3.1Lll 11.1-3.3~11 12.1-2.9-8 
ISHA = 1 1.60.6-10 3.1IO.9~13 4.61.2-13 5.9-1.614 6S2.3316 
ISHA = 2 1.54).5-15 2.9-0.8-15 4.3-l.u-15 5.&1.5-15 8.5-2.5-15 
LSHA = 3 1.40.410 2.7-0.7-12 4.5-1.1-14 5.1-1.3-10 7.72.997 
ISHA = 4 1.3-0.3-10 3.&0.8&13 4.3-1.1-14 5.2-1.410 6.772.1&13 

vergence characteristics for MD0 and ADO as a function of 
the number of iterations. Although ADO has a consistently 
decreasing tendency, this is not the case for MDO. The 
index MD0 tended to show a minimum at the third iteration 
but stabilization was achieved at a later iteration value. A 
very high rate of convergence in the initial few iterations was 
observed throughout this study. This is particularly impor- 
tant for subsequent computations in which orthogonality is 
not strictly required. Then a satisfactory global level of 
orthogonality could be obtained to improve results after 
very few cycles (normally not more than one). 

VI.1.2. Case B. Dirichlet and Neuman Boundary Conditions 

In this part, equidistant boundary correspondence is 
applied to all boundaries but the upper side where Neuman 
boundary conditions are applied. The same non-symmetric 
geometry as in Case A is studied. Table IV shows the results 
of MD0 and ADO for this case. 

Values of MD0 for ZSHA = 3 are slightly higher than 
those reported in [IS], the difference roughly ranging from 
0.2” to 0.8”. A similar difference with ZSHA = 2 for H < 0.15. 

FIG. 4. 16 x I6 grid, H = 0.25, ISHA = 2. Neuman boundary condi- 
tion on upper boundary. 

FIG. 5. 16 x I6 grid, H = 0.15, ISHA = 1. Neuman boundary condi- 
tion on upper boundary. 

However, for larger values of H, i.e., very steep wave forms, 
improved orthogonality characteristics are obtained spe- 
cially for H = 0.25 where [6] failed to converge. This last 
case is shown in Fig. 4. Also for ZSHA = 1, the linear shape 
factor distribution, it was reported in [6] that orthogonal 
grids could not be obtained. This is not the case in this work 
and Fig. 5 shows results for a 16 x 16 grid, H= 0.15, 
ZSHA = 1. For this case, we are able to attain very good 
localized and overall orthogonality characteristics. It can be 
concluded here that the present method gives very good 
orthogonality characteristics regardless of the initial shape 
factor distribution. Convergence is also observed for all H 

CASE 6: NEUMAN B.C. ON UPPER SIDE 

LEGEND j 

6 5 10 

NUMBER OF ITERATIONS 

FIG. 6. Convergence characteristics for Fig. 5. 

5 
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TABLE V 

Case C. Dirichlet and Neuman Boundary Conditions Dis- 
tribution of Boundary Conditions as Defined in [6] Linear 
Isoparametric Elements 

MDO-ADO-Number of Iterations 

Mesh six ISHA = 0 ISHA = I ISHA = 2 ISHA = 3 ISHA = 4 

Rx 8 6.7-2.2-S 6.&1.5%6 6.6-1.5-12 10.2-2.2-6 7.6-l S6 
16x 16 4.61.49 5.9-0.7-7 4.9%0.8-6 7.Gl.lL9 6.&0.7-9 
24 x 24 3.9~1&11 4.60.5-7 3.7VO.C6 4.5-0.8-16 4.M.5~8 
36 x 36 3.7VO.8~10 3.8-0.4-S 2.9-0.66 5.6-o&8 3.94.48 
40x40 2.9-0.6-10 3.2-0.3&S 2.60.3-6 3.&0.5Sl9 3.4-0.3-7 
48x48 2.3-0.5-10 2.8GO.2~8 2.3-0.3-6 4.‘uw9 2.94.2-6 

values and shape factors used. The number of iterations is 
again, in general, only slightly affected as H increases. 

For the case shown in Fig. 5, convergence rates for MD0 
and ADO as a function of the number of iterations are 
shown in Fig. 6. In the presence of Neuman boundary 
conditions both MD0 and ADO exhibited a decreasing 
tendency until convergence was obtained. The rate of con- 
vergence, however, seems to be slower than that for Case A 
using exponential boundary point distribution for a similar 
level of accuracy. 

VI.1.3. Case C. Combination of Neuman and Dirichlet 
Boundary Conditions 

In this case, a combination of Dirichlet and Neuman 
boundary conditions is used as specified in Table I of [6]. 
Results for 4- and 8-noded isoparametric elements are 
presented. Some CPU time values are also given. These 
were obtained using an IBM 3081K. 

Table V shows the results of MD0 and ADO for the 
geometry of Fig. 1 as a function of the number of elements 
and ZSHA for linear elements. These can be readily com- 
pared with those of Table IV in [6]. 

Values of the MD0 here are consistently higher than 
those reported in [6], the difference ranging in general from 
1.5 to 5.0”. Values of ADO are very low, securing excellent 

TABLE VI 

Case C. Dirichlet and Neuman Boundary Conditions Distri- 
bution of Boundary Conditions as Defined in [6] Quadratic 
Isoparametric Elements 

MDO-ADO-Number of Iterations 

Mesh size ISHA = 0 LSHA = 1 ISHA = 2 ISHA = 3 ISHA = 4 

8x 8 6.3%1.8-19 4.3-l&13 3.74.8-9 3.3-0.5-4 3.3-0.5-5 
16x 16 4.9-1.9-7 2.3-0.46 1.40.2-5 1.9-0.4-19 3.905-5 
24x24 3.3-0.6-9 2.0.3~6 1.9-0.3-4 1.8-0.3-17 4.8043 
36 x 36 2.94.&l I I .7-0.3-6 1.94.34 2.84.4-l 1 2.94.&l I 
40x40 2.703-l 1 I .&0.3%6 2.GO.34 4.3-0.3-5 4.GO.3~5 
48x48 3.6-0.4-8 l.CO.2~6 2.24.3-4 1.74%8 l.CO.lL8 

FIG. 7. 16 x 16 grid, H=0.15, ISHA = 2. Linear isoparametric 
elements. 

overall orthogonality, which was observed to be very close 
to 90” in most points of the grids. It can be seen that the 
MD0 parameter shows very little improvement, if any, 
over those given in Tables I and IV, i.e., Cases A and B. 
In other words, localized orthogonality is not improved 
by increasing the use of Neuman boundary conditions. 
However, significant improvement in the overall orthogo- 
nality characteristics (ADO) is observed over results shown 
in Table I, in some cases the improvement being 50%. 
Although ISHA = 0 gave the poorest results in Case B, 
some of the best results are obtained here with this par- 
ticular initial shape function distribution. A more noticeable 
improvement in MD0 is also realized as N increases. 

Table VI shows results for the same conditions as 
Table V for quadratic elements. In this case, overall 

FIG. 8. 16 x 16 grid, H=0.15, ISHA =2. Quadratic isoparametric 
elements. 
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FIG. 9. Convergence characteristics for Figs. 7 and 8 

improved results are obtained for both MD0 and ADO. 
For the latter the improvement was very significant with 
reductions exceeding 50%. Figures 7 and 8 show typical 
results for 16 x 16 grid using linear and quadratic elements, 
respectively. The position of the mid-side nodes for 
quadratic elements is shown in Fig. 8. 

A slight reduction in the number of iterations to attain 
convergence is evident from the comparison of Tables V and 
VI, suggesting a higher rate of convergence for quadratic 
elements. Convergence rates corresponding to Figs. 7 and 8 
are shown in Fig. 9. The higher rate of convergence 
exhibited by quadratic elements is apparent from this figure. 

The reduction in the number of iterations of the quadratic 
elements did not preclude the CPU time from being 
significantly higher than in the case of linear elements. CPU 
time values corresponding to Table V are given in 
Table VII. The experience gathered in this work leads us to 

TABLE VII 

Case C. Dirichlet and Neuman Boundary Conditions Dis- 
tribution of Boundary Conditions as Defined in [6] Linear 
Isoparametric Elements 

CPU Time Required for Convergence of Results of Table V 

Meshsize ISHA =0 ISHA = 1 ISHA =2 ISHA =3 ISHA =4 

8x8 1.7 1.3 2.3 1.3 1.4 
16 x 16 8.6 6.9 5.2 11.2 8.6 
24 x 24 30.5 20.2 17.6 43.3 22.8 
36 x 36 65.5 55.4 41.8 53.4 53.4 
40x40 133.4 108.5 83.5 245.1 95.9 
48x48 244.7 199.2 153.0 221.6 152.9 

recommend the use of linear elements for grid generation. If 
however, quadratic elements are used for subsequent com- 
putations, it is highly advisable to devise an interpolation 
procedure (possibly splines) to locate the mid-side nodes of 
the finite element rather than mapping the entire 8-noded 
element. 

CONCLUSIONS 

A Bubnov-Galerkin procedure has been used to solve 
the elliptic generation system developed in [4] for construc- 
ting boundary-fitted curvilinear orthogonal coordinates. 
Numerical aspects have been studied using the geometries 
presented in [6] with some shape factor distributions 
proposed in [6] and some proposed here. A number of 
improvements have been obtained and essentially different 
conclusions have been realized. 

Orthogonal grids of very good overall/global accuracy 
for both Dirichlet and Neuman boundary conditions 
in symmetric and asymmetric regions were obtained. 
Localized accuracy is lowest for the case of equidistant 
boundary correspondence in an asymmetric domain. For all 
other boundary conditions, including complete boundary 
correspondence with exponential boundary point distribu- 
tion on one side of the domain, localized accuracy is very 
good in both symmetric and asymmetric domains. 

The scheme showed to be stable for all degrees of 
asymmetry and shape factor distributions used here. 
Convergence was observed to be independent of these 
considerations. The number of iterations required for 
convergence was in general quite low, indicating the fast 
convergence characteristics of the scheme. In most cases, 
independence of the number of iterations on the shape 
factor distribution was observed. 

Results obtained with linear and quadratic elements 
suggest that, although the latter are superior in accuracy, 
the former are highly preferable from CPU time considera- 
tions. For computational applications where quadratic 
elements are to be used, it is recommended that an inter- 
polation scheme be devised from the mesh generated with 
linear/Cnoded elements to locate the mid-side nodes of the 
8-noded element. 

The method presented in [4] is therefore considered 
highly reliable when solved using a Bubnov-Galerkin 
formulation. 
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